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Abstract 
 

OilX enables traders and analysts to gain a comprehensive view of the global 
oil markets, and as a result, make better data-driven decisions. This paper 
addresses a solution that reinforces OilX’s value proposition by providing 
and processing real-time data about refinery events around the world. We 
first scraped data from Twitter and Thomson Reuters and then built an 
algorithm that is capable of identifying and clustering similar events. The 
algorithm was trained on 35 000 headlines & 7 000 Tweets, and it yielded a 
77.5% accuracy on a random sample of 165 headlines & 35 Tweets. It was able 
to process 100 Tweets in 64 seconds on a personal computer with an 
unmodified CPU. Tweets usually conveyed information faster, while 
headlines were of better quality. Further improvements involve making 
smart suggestions (analyzing tense, sentiment, the trustworthiness of 
sources), filtering out other types of refineries (e.g., gold, sugar), and 
predicting the impact on refinery capacity. 

Introduction 
 

OilX has developed a digital twin of the global crude oil supply chain by 
combining traditional data with alternative data sets, including cargo 
tracking and satellite observations. Currently, OilX is looking to develop a 
system to monitor adverse events that impact oil supply in refineries. To 
overcome this problem, we developed an algorithm capable of gathering, 
cleaning, and processing data related to worldwide refinery installations. 
This data is then used to extract information about the location, ownership, 
and type of event.  

Produced Solution Outline 
 

Our solution consists of five sequential phases – data gathering, cleaning, 
extraction, identification, and clustering- to produce the desired output of 
information. Figure 1 provides a holistic overview of our solution. 
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Figure 1: Produced solution outline 

 
Data gathering 
 

The first step consists in gathering Tweets from Twitter and headlines from 
Thomson Reuters. We created a scraper using the Python web scraping 
library Selenium in order to collect relevant information only. This scraper 
returns Tweets containing all combinations of refineries-related keywords 
(e.g, refinery, refineries, etc.) and events-related keywords (e.g., fire, attack, 
strike). Given the unstructured nature of the data, we used the database 
management software MongoDB. The use of MongoDB is particularly 
convenient because it allows us to use all the Twitter API’s features 
including natively isolating hashtags, to which we apply different text-
matching methods. Figure 2 provides an overview of a Tweet’s raw output 
on MongoDB.  
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Figure 2: Scraper’s output on MongoDB 

Data preparation 
 

Our model uses data about worldwide refineries provided by OilX (refinery 
name, city, coordinates, owners) to match Tweets and headlines to specific 
refineries. As refineries and cities might be misspelled or shortened in 
Tweets /headlines, we generated multiple variations of these names (e.g., 
Los Angeles could be #LosAngeles without spaces). This step is necessary to 
achieve accurate string matching but only needs to be run when the 
GeoAssets file or the Owners file is altered. Figure 3 indicates the data 
preparation steps. 
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Figure 3 : Data preparation 

Extraction  
 

We use text matching in MongoDB to extract reformatted names (saved in 
the previously-generated files) from Tweets and headlines. We append 
matched refinery names, city names and owner names to the 
corresponding Tweets and headlines in MongoDB, and use the python 
library spaCy with three NLP models to extract GPEs (Geopolitical Entities) 
and NORPs (Nationalities Or Religious or Political groups). To maximize the 
number of matches across different languages, we use case and diacritic 
insensitive text matching. We chose to use MongoDB for its ability to 
perform these operations quickly and efficiently. Figure 4 provides an 
overview of the extraction’s steps. 

 

 
Figure 4 : Extraction 

Refineries matching 
 

During this process, the algorithm identifies the refinery to which the 
Tweet/headline refers. To ensure string matching that is consistent with 
OilX’s database, the algorithm considers the date at which the Tweet was 
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posted, thus ensuring that the matched refinery was indeed open when the 
Tweet was published. 

We harnessed a four-pronged approach to leverage all information 
extracted from Tweets and headlines in the following order :  

● Text matching by  
1. Refinery name (refinery geotag) 
2. City name (city geotag) 
3. Owner name (ownertag) 

 

• Use of the spaCy library to extract 
4. Geopolitical Entities (GPEs) 
5. NORPs, then converted in GPEs 

The use of GPEs requires the deployment of a pre-trained NLP algorithm 
that will find any references to locations in the text and classify them 
according to their entity (city, country, or other tags). Moreover, we use the 
Nominatim API and the geopy library to convert the GPE into a bounding 
box. The algorithm then analyses all refineries present within this bounding 
box, according to the coordinates provided in OilX’s file. Figure 5 displays a 
bounding box and its corresponding refineries. 

 
Figure 5 : Bounding box with Nominatim API (unique match) 

 

Using this information, if a unique match is found, the program will store 
the name of the refinery in MongoDB and assume 100% certainty. If more 
than 1 match is found, the program will suggest all possible locations and 
offer a level of accuracy proportional to the number of refineries available in 
that location (1/n). This could be done by checking the number of refineries 
in the mentioned location or the number of refineries that belong to the 
said owner. 
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Figure 6 shows a case in which the algorithm would allocate 33% probability 
to each refinery. 

 
Figure 6: Bounding box with Nominatim API (multiple matches) 

 

Figure 7 summarizes the steps taken by the algorithm to perform refinery 
matching. 

 

 
Figure 7: Refineries matching 

 

Events matching 
 

The algorithm once more performs string matching on the raw data and 
appends the identified event to a list in MongoDB. It is important to note 
that one Tweet/headline can refer to more than one event type. For 
example, there could be both an explosion and fire at the same time. This 
classification will be further used in the clustering section to perform the 
grouping of similar Tweets/headlines that relate to the same event. Figure 
8 summarizes the event matching process. 
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Figure 8: Events matching 

 

Clustering 
 

After classifying the Tweets/headlines by location and event, we cluster 
them in order to get a single complete output for each event. The goal of 
this step is twofold. First, it allows to combine information among 
Tweets/headlines within the same cluster. Secondly, it summarizes all 
information into a single result in order to have a clear and simple output 
for traders. 

The clustering process takes time, location, and event under consideration.  

First, Tweets and headlines are grouped together based on country name 
and creation time. We chose country names since this is the least granular 
piece of information, ensuring the highest likelihood that the Tweet 
contains this information as opposed to refinery name or city name. 
Moreover, as an assumption, we have defined that it is unlikely to see two 
separate accidents in the same time frame (1 week) in the same country. As 
a result, the algorithm generates an adjacency matrix of size (n,n) for each 
country, with n being the number of Tweets/headlines within the same 
country. The adjacency matrix shown in Figure 10 will display 1 if two Tweets 
/headlines are <1 week apart, and 0 if they are >1 week apart. The algorithm 
then forms a first layer of time-based clusters (composed of ones) in each 
country 
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Figure 10: Time adjacency matrix 

 

In order to make clustering even more consistent with reality, we added a 
layer of event clustering. First, the algorithm calculated the correlation 
among all events within our dataset of 35 000 headlines and 7 000 Tweets. 
Figure 10 shows a part of the resulting correlation matrix as an example. 

 

 
Figure 10: Events correlation matrix 

 

The correlation among events allows the algorithm to put Tweets/headlines 
in different clusters even though they belong to the same country and 
happened the same week. If two Tweets/headlines are close in time but 
mention very uncorrelated events (ρ <0.4), the algorithm will be able to 
recognize two different events happening and will put these 
Tweets/headlines into different clusters through an adjacency matrix. 
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For example, since we know that strike is almost uncorrelated with 
throughput, the algorithm can separate two Tweets mentioning events that 
happened in the same country during the same week if one is about 
throughput and the other is about strike. If each of the 2 Tweets contains 
many events, the algorithm will calculate correlations between all pairs of 
events. Note, however that the algorithm imposes Tweets/headlines to be 
at least two days apart in order to be in separate clusters. 1  

Finally, we superpose the two adjacency matrices (one for time and one for 
event) to develop unique clusters containing all information relevant to 
specific events. Furthermore, the clusters will diminish geolocation 
uncertainty due to a higher volume of Tweets being associated with the 
unique event(s). Figure 11 summarizes the clustering process. 

 
Figure 11: Clustering 

 

Results 
 

We selected a random sample of 35 Tweets and 165 headlines in order to 
estimate the algorithm’s speed and accuracy.  It was able to process 100 
Tweets in 64 seconds on a personal computer with unmodified CPU, and it 
yielded an accuracy of 77.5%. 

False-positive errors (18.5%) were mainly due to very broad Tweets for which 
the algorithm could not assign a refinery with 100% probability. This could 
be highly reduced by simply filtering on refineries found with 100% 
probability. False-positive errors were also partly due to the algorithm not 
being able to recognize among negative and positive sentences (e.g., “not 
to strike” vs. “to strike”). 

 
1 This assumption can simply be changed in the parameters provided with the report. 
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On the other hand, false-negative errors (4%) stemmed from the algorithm 
not being able to recognize a refinery name that was not in the file provided 
by OilX. Although these errors only represented 4%, they could be easily 
solved by updating the GeoAssets file. Figure 12 summarizes the accuracy 
metrics. 

 

 
Figure 12: Accuracy metrics 

Limitations 
 

While the development of this proof of concept clearly proves the possibility 
to successfully monitor the occurrence of abnormal events through 
Twitter/Reuters data, our developed solution could be further improved to 
provide higher quality information. 

When investigating the linguistics of scraped Tweets/headlines, we found 
that while the vast majority of Tweets/headlines are written in English, some 
Tweets/headlines were written in other alphabets. Consequently, further 
iterations should enable the processing of Tweets/headlines written in other 
languages such as Chinese. While this is not a significant limitation given 
that we can detect the vast majority of worldwide events, failure to have the 
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first movers advantage in some circumstances could hinder the ability to 
capitalise on a potential opportunity effectively.  

Moreover, the algorithm is currently incapable of differentiating between 
past and present events. For example, the Tweet “There was a fire 30 years 
ago in Minatitlan” would not be understood as a past event. While this case 
will very rarely happen, we believe that this could be a next step to improve 
the model. 

Finally, the model could not always distinguish events impacting other 
types of refineries, such as gold or sugar refineries. Although this barely 
affected the algorithm’s results, filtering out these refineries could partly 
reduce noise in the dataset.   

Next Steps 
 

While rendering this proof-of-concept marks a significant milestone, the 
journey to develop a commercially viable refinery event monitoring system 
is still incomplete. 

Moving forward, we would encourage OilX to learn from our successes and 
shortfalls to develop a new solution based on a similar architecture. 
However, future iterations should focus on overcoming the proposed 
limitations.  

Further improvements involve differentiating between present and past 
tense, analyzing sentiment to get an emergency score, and assessing the 
trustworthiness of the sources to assign a different weight to each 
tweet/headline in the clustering. Ideally, the algorithm should also be 
capable of predicting the impact on refinery capacity to maximize value for 
traders and analysts. 
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