

OilX – Refinery
Event Monitoring
System (Report)

Table of Contents

ABSTRACT 3

INTRODUCTION 3

PRODUCED SOLUTION OUTLINE 3

DATA GATHERING 4
DATA PREPARATION 5
EXTRACTION 6
REFINERIES MATCHING 6
EVENTS MATCHING 8
CLUSTERING 9

RESULTS 11

LIMITATIONS 12

NEXT STEPS 13

3

Abstract

OilX enables traders and analysts to gain a comprehensive view of the global
oil markets, and as a result, make better data-driven decisions. This paper
addresses a solution that reinforces OilX’s value proposition by providing
and processing real-time data about refinery events around the world. We
first scraped data from Twitter and Thomson Reuters and then built an
algorithm that is capable of identifying and clustering similar events. The
algorithm was trained on 35 000 headlines & 7 000 Tweets, and it yielded a
77.5% accuracy on a random sample of 165 headlines & 35 Tweets. It was able
to process 100 Tweets in 64 seconds on a personal computer with an
unmodified CPU. Tweets usually conveyed information faster, while
headlines were of better quality. Further improvements involve making
smart suggestions (analyzing tense, sentiment, the trustworthiness of
sources), filtering out other types of refineries (e.g., gold, sugar), and
predicting the impact on refinery capacity.

Introduction

OilX has developed a digital twin of the global crude oil supply chain by
combining traditional data with alternative data sets, including cargo
tracking and satellite observations. Currently, OilX is looking to develop a
system to monitor adverse events that impact oil supply in refineries. To
overcome this problem, we developed an algorithm capable of gathering,
cleaning, and processing data related to worldwide refinery installations.
This data is then used to extract information about the location, ownership,
and type of event.

Produced Solution Outline

Our solution consists of five sequential phases – data gathering, cleaning,
extraction, identification, and clustering- to produce the desired output of
information. Figure 1 provides a holistic overview of our solution.

4

Figure 1: Produced solution outline

Data gathering

The first step consists in gathering Tweets from Twitter and headlines from
Thomson Reuters. We created a scraper using the Python web scraping
library Selenium in order to collect relevant information only. This scraper
returns Tweets containing all combinations of refineries-related keywords
(e.g, refinery, refineries, etc.) and events-related keywords (e.g., fire, attack,
strike). Given the unstructured nature of the data, we used the database
management software MongoDB. The use of MongoDB is particularly
convenient because it allows us to use all the Twitter API’s features
including natively isolating hashtags, to which we apply different text-
matching methods. Figure 2 provides an overview of a Tweet’s raw output
on MongoDB.

5

Figure 2: Scraper’s output on MongoDB

Data preparation

Our model uses data about worldwide refineries provided by OilX (refinery
name, city, coordinates, owners) to match Tweets and headlines to specific
refineries. As refineries and cities might be misspelled or shortened in
Tweets /headlines, we generated multiple variations of these names (e.g.,
Los Angeles could be #LosAngeles without spaces). This step is necessary to
achieve accurate string matching but only needs to be run when the
GeoAssets file or the Owners file is altered. Figure 3 indicates the data
preparation steps.

6

Figure 3 : Data preparation

Extraction

We use text matching in MongoDB to extract reformatted names (saved in
the previously-generated files) from Tweets and headlines. We append
matched refinery names, city names and owner names to the
corresponding Tweets and headlines in MongoDB, and use the python
library spaCy with three NLP models to extract GPEs (Geopolitical Entities)
and NORPs (Nationalities Or Religious or Political groups). To maximize the
number of matches across different languages, we use case and diacritic
insensitive text matching. We chose to use MongoDB for its ability to
perform these operations quickly and efficiently. Figure 4 provides an
overview of the extraction’s steps.

Figure 4 : Extraction

Refineries matching

During this process, the algorithm identifies the refinery to which the
Tweet/headline refers. To ensure string matching that is consistent with
OilX’s database, the algorithm considers the date at which the Tweet was

7

posted, thus ensuring that the matched refinery was indeed open when the
Tweet was published.

We harnessed a four-pronged approach to leverage all information
extracted from Tweets and headlines in the following order :

● Text matching by
1. Refinery name (refinery geotag)
2. City name (city geotag)
3. Owner name (ownertag)

• Use of the spaCy library to extract
4. Geopolitical Entities (GPEs)
5. NORPs, then converted in GPEs

The use of GPEs requires the deployment of a pre-trained NLP algorithm
that will find any references to locations in the text and classify them
according to their entity (city, country, or other tags). Moreover, we use the
Nominatim API and the geopy library to convert the GPE into a bounding
box. The algorithm then analyses all refineries present within this bounding
box, according to the coordinates provided in OilX’s file. Figure 5 displays a
bounding box and its corresponding refineries.

Figure 5 : Bounding box with Nominatim API (unique match)

Using this information, if a unique match is found, the program will store
the name of the refinery in MongoDB and assume 100% certainty. If more
than 1 match is found, the program will suggest all possible locations and
offer a level of accuracy proportional to the number of refineries available in
that location (1/n). This could be done by checking the number of refineries
in the mentioned location or the number of refineries that belong to the
said owner.

8

Figure 6 shows a case in which the algorithm would allocate 33% probability
to each refinery.

Figure 6: Bounding box with Nominatim API (multiple matches)

Figure 7 summarizes the steps taken by the algorithm to perform refinery
matching.

Figure 7: Refineries matching

Events matching

The algorithm once more performs string matching on the raw data and
appends the identified event to a list in MongoDB. It is important to note
that one Tweet/headline can refer to more than one event type. For
example, there could be both an explosion and fire at the same time. This
classification will be further used in the clustering section to perform the
grouping of similar Tweets/headlines that relate to the same event. Figure
8 summarizes the event matching process.

9

Figure 8: Events matching

Clustering

After classifying the Tweets/headlines by location and event, we cluster
them in order to get a single complete output for each event. The goal of
this step is twofold. First, it allows to combine information among
Tweets/headlines within the same cluster. Secondly, it summarizes all
information into a single result in order to have a clear and simple output
for traders.

The clustering process takes time, location, and event under consideration.

First, Tweets and headlines are grouped together based on country name
and creation time. We chose country names since this is the least granular
piece of information, ensuring the highest likelihood that the Tweet
contains this information as opposed to refinery name or city name.
Moreover, as an assumption, we have defined that it is unlikely to see two
separate accidents in the same time frame (1 week) in the same country. As
a result, the algorithm generates an adjacency matrix of size (n,n) for each
country, with n being the number of Tweets/headlines within the same
country. The adjacency matrix shown in Figure 10 will display 1 if two Tweets
/headlines are <1 week apart, and 0 if they are >1 week apart. The algorithm
then forms a first layer of time-based clusters (composed of ones) in each
country

10

Figure 10: Time adjacency matrix

In order to make clustering even more consistent with reality, we added a
layer of event clustering. First, the algorithm calculated the correlation
among all events within our dataset of 35 000 headlines and 7 000 Tweets.
Figure 10 shows a part of the resulting correlation matrix as an example.

Figure 10: Events correlation matrix

The correlation among events allows the algorithm to put Tweets/headlines
in different clusters even though they belong to the same country and
happened the same week. If two Tweets/headlines are close in time but
mention very uncorrelated events (ρ <0.4), the algorithm will be able to
recognize two different events happening and will put these
Tweets/headlines into different clusters through an adjacency matrix.

11

For example, since we know that strike is almost uncorrelated with
throughput, the algorithm can separate two Tweets mentioning events that
happened in the same country during the same week if one is about
throughput and the other is about strike. If each of the 2 Tweets contains
many events, the algorithm will calculate correlations between all pairs of
events. Note, however that the algorithm imposes Tweets/headlines to be
at least two days apart in order to be in separate clusters. 1

Finally, we superpose the two adjacency matrices (one for time and one for
event) to develop unique clusters containing all information relevant to
specific events. Furthermore, the clusters will diminish geolocation
uncertainty due to a higher volume of Tweets being associated with the
unique event(s). Figure 11 summarizes the clustering process.

Figure 11: Clustering

Results

We selected a random sample of 35 Tweets and 165 headlines in order to
estimate the algorithm’s speed and accuracy. It was able to process 100
Tweets in 64 seconds on a personal computer with unmodified CPU, and it
yielded an accuracy of 77.5%.

False-positive errors (18.5%) were mainly due to very broad Tweets for which
the algorithm could not assign a refinery with 100% probability. This could
be highly reduced by simply filtering on refineries found with 100%
probability. False-positive errors were also partly due to the algorithm not
being able to recognize among negative and positive sentences (e.g., “not
to strike” vs. “to strike”).

1 This assumption can simply be changed in the parameters provided with the report.

12

On the other hand, false-negative errors (4%) stemmed from the algorithm
not being able to recognize a refinery name that was not in the file provided
by OilX. Although these errors only represented 4%, they could be easily
solved by updating the GeoAssets file. Figure 12 summarizes the accuracy
metrics.

Figure 12: Accuracy metrics

Limitations

While the development of this proof of concept clearly proves the possibility
to successfully monitor the occurrence of abnormal events through
Twitter/Reuters data, our developed solution could be further improved to
provide higher quality information.

When investigating the linguistics of scraped Tweets/headlines, we found
that while the vast majority of Tweets/headlines are written in English, some
Tweets/headlines were written in other alphabets. Consequently, further
iterations should enable the processing of Tweets/headlines written in other
languages such as Chinese. While this is not a significant limitation given
that we can detect the vast majority of worldwide events, failure to have the

13

first movers advantage in some circumstances could hinder the ability to
capitalise on a potential opportunity effectively.

Moreover, the algorithm is currently incapable of differentiating between
past and present events. For example, the Tweet “There was a fire 30 years
ago in Minatitlan” would not be understood as a past event. While this case
will very rarely happen, we believe that this could be a next step to improve
the model.

Finally, the model could not always distinguish events impacting other
types of refineries, such as gold or sugar refineries. Although this barely
affected the algorithm’s results, filtering out these refineries could partly
reduce noise in the dataset.

Next Steps

While rendering this proof-of-concept marks a significant milestone, the
journey to develop a commercially viable refinery event monitoring system
is still incomplete.

Moving forward, we would encourage OilX to learn from our successes and
shortfalls to develop a new solution based on a similar architecture.
However, future iterations should focus on overcoming the proposed
limitations.

Further improvements involve differentiating between present and past
tense, analyzing sentiment to get an emergency score, and assessing the
trustworthiness of the sources to assign a different weight to each
tweet/headline in the clustering. Ideally, the algorithm should also be
capable of predicting the impact on refinery capacity to maximize value for
traders and analysts.

	Abstract
	Introduction
	Produced Solution Outline
	Data gathering
	Data preparation
	Extraction
	Refineries matching
	Events matching
	Clustering

	Results
	Limitations
	Next Steps

