
Spotify Track Popularity

September 6, 2024

1 Project Overview
The main question we are trying to answer is: What factors influence the popularity of a
song on Spotify? For this, we will use Spotify’s API, which contains a popularity index for each
song, as well as attributes such as like valence, loudness, energy, lyrics etc. We will also have access
to information about artists and music charts to explore our question.

2 Analysis of Dataset
To answer our central questions about Spotify popularity and its driving factors, we have constituted
our own database on BigQuery using Kaggle Spotify datasets ’Tracks”, “Artists”, “Charts”, and
“Lyrics” each containing information of a group of songs gleaned from the Spotify API.

Tables

• Tracks : This dataset contains information over more than 500,000 Spotify tracks, including,
artist, album, audio features (e.g. loudness), and popularity.

• Artists : This dataset describes contains the list of artists along with their popularity, genres,
and number of followers in 2020.

• Charts : This is a complete dataset of all the “Top 200” and “Viral 50” charts published
globally by Spotify. Spotify publishes a new chart every 2-3 days. This is its entire collection
since January 1, 2017

• Lyrics : This dataset contains various types of information over more than 18,000 Spotify
songs. The Lyrics dataset complements the Tracks dataset, by adding new information that
will be used in our exploration and ML prediction, such as the lyrics, the genre/subgenre,
and information about playlists.

2.0.1 Relational schema

We drew a relational schema using the IDEF1X data modeling language to clearly represent our
database and the relationship among the tables. The relational schema summarizes the Primary
Keys, the Foreign Keys, and consequently the possible JOINS among tables.

[167]: from IPython.display import Image
Image('/content/drive/MyDrive/CS145/relational_schema.png',width=1300,␣

↪height=980)

[167]:

1

• Tracks

The Primary Key is track_id, and the Foreign Key is id_artists, which can be found in the Artists
dataset.

1. One-to-one relationship with Charts : Logically, a certain chart can contain the same track
multiple times (on different dates), and a track can be contained in multiple charts. However,
the PK of charts is an aggregate key composed of title + artist + date + chart + region.
There is no separate table only for charts. Thus, the relationship between Tracks and Charts
is one-to-one rather than many-to-many.

2. Many-to-Many relationship with Artists : A track can be composed by many artists, and an
artist can compose many tracks.

3. One-to-One relationship with Lyrics : Both tables have the same primary key, although they
contain different information.

• Artists

The Primary Key is id, which is the Spotify ID of the artist.

1. One-to-Many relationship with Charts : A chart for a song on a certain day can contain
multiple artists, buy an artist can’t figure multiple times in a chart for a certain song on a

2

certain day. Again, this is because the PK of charts is an aggregate key composed of title +
artist + date + chart.

2. Many-to-Many relationship with Tracks : A track can be composed by many artists, and an
artist can compose many tracks.

3. Note that there is relationship with the Lyrics dataset, since the Lyrics dataset does not
contain the artist_id, but only the artist name, which might not be unique.

• Charts

The Primary Key is an aggregation of track_id + artist_id + date + chart + region. This
represents the fact that a song written by 1 or more artists appeared in a chart on a specific date
in a specific region. Note that there is no separate table for charts.

1. One-to-one relationship with Tracks : Logically, a certain chart can contain the same track
multiple times (on different dates), and a track can be contained in multiple charts. However,
the PK of charts is an aggregate key composed of title + artist + date + chart + region.
There is no separate table only for charts. Thus, the relationship between Tracks and Charts
is one-to-one rather than many-to-many.

2. Note that there is relationship with the Artists dataset, since the Lyrics dataset does not
contain the artist_id, but only the artist name, which might not be unique.

3. One-to-One relationship with Lyrics : Logically, a certain chart can contain the same song
multiple times (on different dates), and a song can be contained in multiple charts. However,
the PK of charts is an aggregate key composed of title + artist + date + charts. There is no
separate table only for charts. Thus, the relationship between Lyrics (which are essentially
songs) and Charts is one-to-one rather than many-to-many.

• Lyrics

The Primary Key is track_id. This table is not directly linked to the Artists table, because it does
not contain an artist_id variable. Rather, it contains the artist name, which is not unique (and
thus, is not a foreign key).

1. One-to-One relationship with Charts : Logically, a certain chart can contain the same song
multiple times (on different dates), and a song can be contained in multiple charts. However,
the PK of charts is an aggregate key composed of title + artist + date + chart + region.
There is no separate table only for charts. Thus, the relationship between Lyrics (which are
essentially songs) and Charts is one-to-one rather than many-to-many.

2. One-to-One relationship with Tracks : Both tables have the same primary key, although they
contain different information.

2.0.2 Tables

We will now describe the tables in detail. Following is a data dictionary with the description of
each variable, along with their type.

2.0.3 Tracks table (133.05 MB)

The Tracks table contains information over more than 500,000 Spotify tracks, including, artist,
album, audio features (e.g. loudness), and popularity.

3

It has 586,672 rows and 20 columns :

• acousticness (float) : A confidence measure from 0.0 to 1.0 of whether the track is acoustic.
1.0 represents high confidence the track is acoustic.

• analysis_url (string) : A URL to access the full audio analysis of this track. An access
token is required to access this data.

• danceability (float) : Danceability describes how suitable a track is for dancing based on a
combination of musical elements including tempo, rhythm stability, beat strength, and overall
regularity. A value of 0.0 is least danceable and 1.0 is most danceable.

• duration_ms (int) : The duration of the track in milliseconds.

• energy (float) : Energy is a measure from 0.0 to 1.0 and represents a perceptual measure
of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example,
death metal has high energy, while a Bach prelude scores low on the scale. Perceptual features
contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate,
and general entropy.

• id (string) : The Spotify ID for the track.

• instrumentalness (float) : Predicts whether a track contains no vocals. “Ooh” and “aah”
sounds are treated as instrumental in this context. Rap or spoken word tracks are clearly
“vocal”. The closer the instrumentalness value is to 1.0, the greater likelihood the track
contains no vocal content. Values above 0.5 are intended to represent instrumental tracks,
but confidence is higher as the value approaches 1.0.

• key (int) : The key the track is in. Integers map to pitches using standard Pitch Class
notation. E.g. 0 = C, 1 = C�/D�, 2 = D, and so on. If no key was detected, the value is -1.

• liveness (float) : Detects the presence of an audience in the recording. Higher liveness values
represent an increased probability that the track was performed live. A value above 0.8
provides strong likelihood that the track is live.

• loudness (float) : The overall loudness of a track in decibels (dB). Loudness values are
averaged across the entire track and are useful for comparing relative loudness of tracks.
Loudness is the quality of a sound that is the primary psychological correlate of physical
strength (amplitude). Values typically range between -60 and 0 db.

• mode (int) : Mode indicates the modality (major or minor) of a track, the type of scale from
which its melodic content is derived. Major is represented by 1 and minor is 0.

• speechiness (float) : Speechiness detects the presence of spoken words in a track. The more
exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0
the attribute value. Values above 0.66 describe tracks that are probably made entirely of
spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music
and speech, either in sections or layered, including such cases as rap music. Values below 0.33
most likely represent music and other non-speech-like tracks.

• tempo (float) : The overall estimated tempo of a track in beats per minute (BPM). In
musical terminology, tempo is the speed or pace of a given piece and derives directly from
the average beat duration.

4

• time_signature (int) : An estimated time signature. The time signature (meter) is a
notational convention to specify how many beats are in each bar (or measure). The time
signature ranges from 3 to 7 indicating time signatures of “3/4”, to “7/4”.

• track_href (string) : A link to the Web API endpoint providing full details of the track.

• type (string) : The object type.

• uri (string) : The Spotify URI for the track.

• valence (float) : A measure from 0.0 to 1.0 describing the musical positiveness conveyed by
a track. Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while
tracks with low valence sound more negative (e.g. sad, depressed, angry).

2.0.4 Artists Dataset (73.1 MB)

The artists dataset contains the list of artists along with their popularity, genres, and number of
followers in 2020.

• id (string) : The Spotify ID for the artist.

• followers (float) : A URL to access the full audio analysis of this track. An access token is
required to access this data.

• genres (string) : Danceability describes how suitable a track is for dancing based on a
combination of musical elements including tempo, rhythm stability, beat strength, and overall
regularity. A value of 0.0 is least danceable and 1.0 is most danceable.

• name (string) : The duration of the track in milliseconds.

• popularity (int) : Energy is a measure from 0.0 to 1.0 and represents a perceptual measure
of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example,
death metal has high energy, while a Bach prelude scores low on the scale. Perceptual features
contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate,
and general entropy.

2.0.5 Charts Dataset (3.46 GB)

• title (string) : The title of the track.

• rank (int) : The rank in the chart.

• date (date) : The date when the song figured in the chart.

• artist (string) : The name of the artist.

• url (string) : The Spotify url of the song.

• region (string) : The region where the song reached a certain rank on a specific date.

• chart (string) : Charts that tabulate the relative weekly popularity of songs

• trend (string) : A binary value to represent whether the song’s rank moved up or down in a
chart, in a specific region.

• streams (int) : The number of streams accumulated for a song.

5

2.0.6 Lyrics Dataset (42.47 MB)

• track id (string) : The Spotify ID of the track.

• track name (string) : A URL to access the full audio analysis of this track. An access token
is required to access this data.

• track artist (string) : The artist of the track. Note that there can be only one in this
dataset.

• lyrics (string) : The lyrics of the song.

• track_popularity (float) : The popularity of the track, which is a score between 0 and 1.

• track_album_id (string) : A unique identifier for the track album.

• track_album_name (string) : The name of the track album.

• track_album_release_date (date) : The release date of the track album.

• playlist_name (string) : The name of the playlist.

• playlist_id (string) : A unique identifier for the playlist.

• playlist_genre (string) : The genre of the playlist.

• playlist_subgenre (string) : The subgenre of the playlist.

• acousticness (float) : A confidence measure from 0.0 to 1.0 of whether the track is acoustic.
1.0 represents high confidence the track is acoustic.

• danceability (float) : Danceability describes how suitable a track is for dancing based on a
combination of musical elements including tempo, rhythm stability, beat strength, and overall
regularity. A value of 0.0 is least danceable and 1.0 is most danceable.

• energy (float) : Energy is a measure from 0.0 to 1.0 and represents a perceptual measure
of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example,
death metal has high energy, while a Bach prelude scores low on the scale. Perceptual features
contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate,
and general entropy.

• instrumentalness (float) : Predicts whether a track contains no vocals. “Ooh” and “aah”
sounds are treated as instrumental in this context. Rap or spoken word tracks are clearly
“vocal”. The closer the instrumentalness value is to 1.0, the greater likelihood the track
contains no vocal content. Values above 0.5 are intended to represent instrumental tracks,
but confidence is higher as the value approaches 1.0.

• key (int) : The key the track is in. Integers map to pitches using standard Pitch Class
notation. E.g. 0 = C, 1 = C�/D�, 2 = D, and so on. If no key was detected, the value is -1.

• liveness (float) : Detects the presence of an audience in the recording. Higher liveness values
represent an increased probability that the track was performed live. A value above 0.8
provides strong likelihood that the track is live.

• loudness (float) : The overall loudness of a track in decibels (dB). Loudness values are
averaged across the entire track and are useful for comparing relative loudness of tracks.

6

Loudness is the quality of a sound that is the primary psychological correlate of physical
strength (amplitude). Values typically range between -60 and 0 db.

• mode (int) : Mode indicates the modality (major or minor) of a track, the type of scale from
which its melodic content is derived. Major is represented by 1 and minor is 0.

• speechiness (float) : Speechiness detects the presence of spoken words in a track. The more
exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0
the attribute value. Values above 0.66 describe tracks that are probably made entirely of
spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music
and speech, either in sections or layered, including such cases as rap music. Values below 0.33
most likely represent music and other non-speech-like tracks.

• valence (float) : A measure from 0.0 to 1.0 describing the musical positiveness conveyed by
a track. Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while
tracks with low valence sound more negative (e.g. sad, depressed, angry).

• tempo (float) : The overall estimated tempo of a track in beats per minute (BPM). In
musical terminology, tempo is the speed or pace of a given piece and derives directly from
the average beat duration.

• duration_ms (int) : The duration of the track in milliseconds.

• language (string) : Language of the song.

3 Data Exploration
First, we authenticate and import libraries.

[87]: # Run this cell to authenticate yourself to BigQuery
Anhtony : cs145-project-1-365108
Othman : cs145-365221
from google.colab import auth
auth.authenticate_user()
project_id = 'cs145-365221'
#project_id = 'cs145-project-1-365108' # Anthony's project_id

[88]: # Initialize BiqQuery client
from google.cloud import bigquery
client = bigquery.Client(project = project_id)

[89]: import matplotlib.pyplot as plt
from plotnine import *
import numpy as np
import pandas as pd
from sklearn.utils import shuffle
import random
import seaborn as sns
import pandas as pd
import numpy as np

7

%matplotlib inline

3.1 Data preparation and feature engineering
3.1.1 We join the lyrics dataset with the tracks dataset, to have access to the full set

of variables concerning tracks. We need to do this because the lyrics dataset
does not contain some variables such as ‘explicit’ or ‘release date’, and the
tracks dataset does not contain variables such as “lyrics” or “playlist genre’.

[90]: %%bigquery prepare --project $project_id

Join the lyrics dataset to the tracks dataset
SELECT *
FROM `cs145-365221.spotify_database.lyrics` lyrics
JOIN (SELECT explicit, release_date,time_signature,id FROM `cs145-365221.

↪spotify_database.tracks`) tracks
ON lyrics.track_id = tracks.id

Query is running: 0%| |

Downloading: 0%| |

[91]: prepare

[91]: track_id track_name \
0 1GMDpf82TUwTVBPYiu0dmR Switch Lanes
1 2BJSMvOGABRxokHKB0OI8i Shoota (feat. Lil Uzi Vert)
2 3keUgTGEoZJt0QkzTB6kHg Truffle Butter
3 3m8CQnnfJJp4eQMWWl3zay Drank in My Cup
4 3uulVrxiI7iLTjOBZsaiF8 Donald Trump
… … …
6541 4Km5HrUvYTaSUfiSGPJeQR Bad and Boujee (feat. Lil Uzi Vert)
6542 5274I4mUMnYczyeXkGDWZN Fine China
6543 3zf852pgVUpYqQD1FTLa69 Booyah - Original Mix
6544 6dMHdkQmWuDuDltWjBLJBd Karate
6545 6qqd7DGn2VXzxsR4k3Ycun Fantasias - Unplugged

track_artist lyrics \
0 Tyga Uhh, when I switch lanes, Phantom doors swing …
1 Playboi Carti Yeah Now Now is my time Now is my time(That-th…
2 Nicki Minaj You know Touchin' Yeah Night of You know Touch…
3 Kirko Bangz NA I done came down, hold up Grip the grain, r…
4 Mac Miller Hey Ayo, Sap! What's good, bruh? This man is k…
… … …
6541 Migos You know, young rich niggas You know somethin'…
6542 Future The world on drugs Ten (Yeah) thousand dollar …

8

6543 Showtek Yes son, all we care about Is then party keepi…
6544 R3HAB Energy, give me energy Energy, give me energy …
6545 Rauw Alejandro NA (Yeah)¡Gangalee! (Uh-uh-uh) Ra'-Rauw ¿Cómo …

track_popularity track_album_id \
0 64 5PKYeoSKEVQd7ZTnwnWRn7
1 77 7dAm8ShwJLFm9SaJ6Yc58O
2 64 0cg0JTyl731GnvVS1MyYjj
3 62 7tivRA9WDD0rWVazWm2pFS
4 68 6eFkuEfykAUpthUiUeu3zw
… … …
6541 77 2AvupjUeMnSffKEV05x222
6542 80 6P9PZjWXoCRF5b66BafPKY
6543 41 7iQyAbpQ9istpcWKdTQDIZ
6544 57 2d08mANNHmeIsJLnbqE6NU
6545 77 2NQINd10CuEMzd7wBMZc7G

track_album_name track_album_release_date \
0 Hotel California (Deluxe) 2013-01-01
1 Die Lit 2018-05-11
2 Truffle Butter 2015-01-23
3 Drank In My Cup 2011-09-16
4 Donald Trump - Single 2011-05-17
… … …
6541 Culture 2017-01-27
6542 Future & Juice WRLD Present… WRLD ON DRUGS 2018-10-19
6543 Booyah (The Remixes) 2013-12-20
6544 Karate 2014-12-29
6545 Fantasias (Unplugged) 2019-11-05

playlist_name playlist_id … instrumentalness liveness \
0 Hip-Hop 'n RnB 0275i1VNfBnsNbPl0QIBpG … 0.000545 0.1040
1 Hip-Hop 'n RnB 0275i1VNfBnsNbPl0QIBpG … 0.000000 0.1220
2 Hip-Hop 'n RnB 0275i1VNfBnsNbPl0QIBpG … 0.000041 0.1240
3 Hip-Hop 'n RnB 0275i1VNfBnsNbPl0QIBpG … 0.000000 0.1980
4 Hip-Hop 'n RnB 0275i1VNfBnsNbPl0QIBpG … 0.000000 0.3910
… … … … … …
6541 Trap Americana 7tkgK1tm9hYkWp7EFyOcAr … 0.000000 0.1230
6542 Trap Americana 7tkgK1tm9hYkWp7EFyOcAr … 0.000000 0.1260
6543 Big Room House 7vJOXFe40axY7qS39vGDyH … 0.011100 0.0622
6544 Big Room House 7vJOXFe40axY7qS39vGDyH … 0.002400 0.6840
6545 Reggaeton 2020 � 7xWuNevFBmwnFEg6wzdCc7 … 0.000000 0.1200

valence tempo duration_ms language explicit release_date \
0 0.463 92.486 221493 en 1 2013-01-01
1 0.480 153.069 153800 en 1 2018-05-11
2 0.491 105.113 219227 en 1 2015-01-23

9

3 0.234 132.890 232160 en 1 2011-09-16
4 0.836 162.994 165908 en 1 2011-05-17
… … … … … … …
6541 0.175 127.076 343150 en 1 2017-01-27
6542 0.551 166.111 141587 en 1 2018-10-19
6543 0.499 127.997 311080 en 0 2013-12-20
6544 0.668 128.010 210000 en 0 2014-12-29
6545 0.538 91.952 200594 es 0 2019-11-05

time_signature id
0 4 1GMDpf82TUwTVBPYiu0dmR
1 4 2BJSMvOGABRxokHKB0OI8i
2 4 3keUgTGEoZJt0QkzTB6kHg
3 4 3m8CQnnfJJp4eQMWWl3zay
4 4 3uulVrxiI7iLTjOBZsaiF8
… … …
6541 4 4Km5HrUvYTaSUfiSGPJeQR
6542 4 5274I4mUMnYczyeXkGDWZN
6543 4 3zf852pgVUpYqQD1FTLa69
6544 4 6dMHdkQmWuDuDltWjBLJBd
6545 4 6qqd7DGn2VXzxsR4k3Ycun

[6546 rows x 29 columns]

3.1.2 Nickolay Lamm, a Pittsburgh-based digital artist, has a recent project called
“History of Love” in which he collected the data of the songs on Billboard’s
Year-End Hot 100 list since 1960. He lists the most popular words in these
songs.

The list of these words : - Baby - Girls - Boys - Home - Love - Money - Foul - Body - Sex

We will create dummy variables that account for the presence of these words in our songs.

[92]: %%bigquery dummy --project $project_id

SELECT *,
case when LOWER(lyrics) like '%baby%' THEN 1 ELSE 0 END AS baby,
case when LOWER(lyrics) like '%girl%' THEN 1 ELSE 0 END AS girl,
case when LOWER(lyrics) like '%boy%' THEN 1 ELSE 0 END AS boy,
case when LOWER(lyrics) like '%home%' THEN 1 ELSE 0 END AS home,
case when LOWER(lyrics) like '%love%' THEN 1 ELSE 0 END AS love,
case when LOWER(lyrics) like '%money%' THEN 1 ELSE 0 END AS money,
case when LOWER(lyrics) like '%foul%' THEN 1 ELSE 0 END AS foul,
case when LOWER(lyrics) like '%body%' THEN 1 ELSE 0 END AS body,
case when LOWER(lyrics) like '%sex%' THEN 1 ELSE 0 END AS sex,
FROM
(SELECT *
FROM `cs145-365221.spotify_database.lyrics` lyrics

10

JOIN (SELECT explicit, release_date,time_signature,id FROM `cs145-365221.
↪spotify_database.tracks`) tracks

ON lyrics.track_id = tracks.id)
ORDER BY RAND()

Query is running: 0%| |

Downloading: 0%| |

[93]: dummy

[93]: track_id track_name track_artist \
0 0TiC3GtlMCskf2hIUIBcDV Crew Love Drake
1 5RsUlxLto4NZbhJpqJbHfN Jessie's Girl Rick Springfield
2 0ntQJM78wzOLVeCUAW7Y45 Sex on Fire Kings of Leon
3 3JyvSSU0VnlMUsQckyEVfX Darkside grandson
4 5LN1B9uVAVleCZ2euGarvi MVP Big L
… … … …
6541 3lGBvPUgO7MJltUnBlOpe9 Mass Appeal Gang Starr
6542 4h0zU3O9R5xzuTmNO7dNDU Lost Boy Ruth B.
6543 5rwdhliMmo0aAQ08vU0AOZ Maps Maroon 5
6544 75JFxkI2RXiU7L9VXzMkle The Scientist Coldplay
6545 2lp8xjq0WTm3HZKHuDEweg Tell Me Groove Theory

lyrics track_popularity \
0 Take your nose off my keyboard What you bother… 51
1 Jessie is a friend Yeah, I know, he's been a g… 70
2 Lay where you're layin' Don't make a sound I k… 79
3 The kid has got a dark side Best believe it, p… 60
4 Ayo, spark up the phillies and pass the stout … 53
… … …
6541 NA "Money's growin' like grass with the mass a… 61
6542 There was a time when I was alone Nowhere to g… 76
6543 I miss the taste of a sweeter life I miss the … 60
6544 Come up to meet you, tell you I'm sorry You do… 83
6545 I've been doing my own thing Love has always h… 63

track_album_id track_album_name \
0 63WdJvk8G9hxJn8u5rswNh Take Care (Deluxe)
1 4KKFWTePKtgb6mOwFDqxYa Working Class Dog
2 5CZR6ljD0x9fTiS4mh9wMp Only By The Night
3 6puy3Q1mjuizTB4i91Xorq a modern tragedy vol. 2
4 7xvBUHu5jJ7X0wdRHudLFD Lifestylez Ov Da Poor & Dangerous
… … …
6541 67kl5m0df6Bn0aSe3g5Ea7 Hard To Earn
6542 7drYNu2imHk188vP81icR3 Lost Boy
6543 4KXLjIEas8MTwwX3xpmAdC V (Deluxe)

11

6544 0RHX9XECH8IVI3LNgWDpmQ A Rush of Blood to the Head
6545 0VVegiriO1eyyfOKrLmxtc Groove Theory

track_album_release_date playlist_name \
0 2011-11-15 Urban Contemporary
1 1981 The Sound of Album Rock
2 2008-09-23 Permanent wave
3 2019-02-22 2019 in Indie Poptimism
4 1995-03-28 90's Hip Hop Ultimate Collection
… … …
6541 1994-03-08 90's Hip Hop Ultimate Collection
6542 2015-08-21 urban contemporary
6543 2015-05-18 Today's Hits 2000-Present
6544 2002-08-08 Mix ElectroPop//ElectroHouse// DeepHouse 2020
6545 1995-07-25 New Jack Swing - 90s R&B fused w Hip Hop

playlist_id … id baby girl boy \
0 4Pbs84EQbuAblxlp6Chz0d … 0TiC3GtlMCskf2hIUIBcDV 0 1 0
1 3yj9YnQGTdnFuKbDyXGDi6 … 5RsUlxLto4NZbhJpqJbHfN 0 1 0
2 0tOy7ZY4E2PadXIyj8zU43 … 0ntQJM78wzOLVeCUAW7Y45 0 0 0
3 16RNbqnNCCLlBJti7JU5nc … 3JyvSSU0VnlMUsQckyEVfX 0 0 0
4 4IG024zoaGMurhTFBkMAv9 … 5LN1B9uVAVleCZ2euGarvi 0 1 0
… … … … … … …
6541 4IG024zoaGMurhTFBkMAv9 … 3lGBvPUgO7MJltUnBlOpe9 0 0 1
6542 4WiB26kw0INKwbzfb5M6Tv … 4h0zU3O9R5xzuTmNO7dNDU 0 0 1
6543 6a66cg3HcsjYkisYyQcov6 … 5rwdhliMmo0aAQ08vU0AOZ 1 0 0
6544 23swqzpOZwW1NhPiZ7iyFI … 75JFxkI2RXiU7L9VXzMkle 0 0 0
6545 79xd4wnVuKZK4rJMsL2wPa … 2lp8xjq0WTm3HZKHuDEweg 1 1 1

home love money foul body sex
0 0 0 1 0 0 0
1 0 1 0 0 1 0
2 0 0 0 0 0 1
3 0 0 0 0 1 0
4 0 1 1 0 0 0
… … … … … … …
6541 0 0 1 0 0 0
6542 1 1 0 0 0 0
6543 0 0 0 0 0 0
6544 0 1 0 0 1 0
6545 0 1 0 0 0 0

[6546 rows x 38 columns]

12

3.1.3 We randomly shuffle the dataset and add it to BigQuery. The reason we shuffle
it is because in the Machine Learning part, we are going to take the first 80%
as training, the next 10% as validation, and the last 10% as testing. We would
like this split to be random so we shuffle the dataset now.

[]: # We upload this dataframe to BigQuery because we are going to work on it for␣
↪the rest of the project.

random.seed(10)

dummy = shuffle(dummy)

dummy.to_csv('/content/sample_data/dummy.csv')

some variables
filename = '/content/sample_data/dummy.csv' # this is the file path to your csv
dataset_id = 'spotify_database'
table_id = 'processed_tracks'

tell the client everything it needs to know to upload our csv
dataset_ref = client.dataset(dataset_id)
table_ref = dataset_ref.table(table_id)
job_config = bigquery.LoadJobConfig()
job_config.source_format = bigquery.SourceFormat.CSV
job_config.autodetect = True

load the csv into bigquery
with open(filename, "rb") as source_file:

job = client.load_table_from_file(source_file, table_ref,␣
↪job_config=job_config)

job.result() # Waits for table load to complete.

looks like everything worked :)
print("Loaded {} rows into {}:{}.".format(job.output_rows, dataset_id,␣

↪table_id))

3.2 Data visualization
3.3 We visualize the correlation among all numeric variables
Correlation among variables

[94]: # We get the numeric variables and change their type from Int64 to int64. This␣
↪is because the uppercase i is a problem for the ggplot library.

dummy_numeric = dummy._get_numeric_data()
for col in dummy_numeric:

if dummy_numeric[col].dtype == 'Int64':

13

dummy_numeric[col] = dummy_numeric[col].astype('int64')

Heatmap
corr_mat= dummy_numeric.corr()
plt.figure(figsize=(16,16))
sns.heatmap(corr_mat,cmap="Blues")

[94]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa3f9fe4f70>

14

3.3.1 Most variables are not correlated, but we can see some exceptions, such as
“explicit” with “speechiness”, or “loudness” with “energy”.

3.4 Our target variable is ‘popularity’. Thus, we visualize the correlation of
each variable with our target variable ‘popularity’.

Correlation of variables with ‘popularity’

[]: scale = dummy_numeric.drop("track_popularity", axis=1).apply(lambda x: x.
↪corr(dummy_numeric.track_popularity))

plt.figure(figsize=(16,16))
sns.heatmap(pd.DataFrame(scale.sort_values()), annot=True, fmt="g",␣

↪cmap='Blues')

plt.show()

15

3.4.1 We can see that ‘duration_ms’ and ‘valence’ are the two most negatively corre-
lated variables with popularity, while ‘explicit’ and ‘loudness’ are the two most
positively correlated variables with popularity. Given this, we predict that
these four variables will most succesfully predict popularity in our ML model.

3.4.2 Now, we analyze the distribution of popularity among all songs of our dataset.

Distribution of popularity

[]: %%bigquery popularity_distribution --project $project_id

WITH pop AS
(SELECT
case

when track_popularity > 0 and track_popularity <= 10 then 'Between 0␣
↪and 10'

when track_popularity > 10 and track_popularity <= 20 then 'Between 10␣
↪and 20'

when track_popularity > 20 and track_popularity <= 30 then 'Between 20␣
↪and 30'

when track_popularity > 30 and track_popularity <= 40 then 'Between 30␣
↪and 40'

when track_popularity > 40 and track_popularity <= 50 then 'Between 40␣
↪and 50'

when track_popularity > 50 and track_popularity <= 60 then 'Between 50␣
↪and 60'

when track_popularity > 60 and track_popularity <= 70 then 'Between 60␣
↪and 70'

when track_popularity > 70 and track_popularity <= 80 then 'Between 70␣
↪and 80'

when track_popularity > 80 and track_popularity <= 90 then 'Between 80␣
↪and 90'

when track_popularity > 90 then 'Greater than 90'
end as pop_count,
FROM `cs145-365221.spotify_database.processed_tracks`)

SELECT pop_count,COUNT(pop_count) AS count_pop FROM pop GROUP BY pop_count

Query is running: 0%| |

Downloading: 0%| |

[]: popularity_distribution

[]: pop_count count_pop
0 Between 30 and 40 354
1 Between 60 and 70 2042
2 Between 40 and 50 795
3 Between 70 and 80 1403

16

4 Between 50 and 60 1546
5 Between 80 and 90 301
6 Greater than 90 28
7 Between 20 and 30 69
8 Between 10 and 20 7
9 Between 0 and 10 1

[]: popularity_distribution['count_pop'] = popularity_distribution['count_pop'].
↪astype(np.int64)

ggplot(popularity_distribution, aes(x = 'pop_count', y = 'count_pop')) +␣
↪geom_bar(stat = "identity") + labs(x = "Popularity", y = "Occurences", title␣
↪= "Popularity distribution") + theme_minimal() +␣
↪theme(plot_title=element_text(face= "bold", size=17, family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank()) +␣
↪coord_flip()

[]: <ggplot: (8765659758084)>

17

3.4.3 It seems that popularity is normally distributed across all songs of our dataset,
with mean between 60 and 70.

3.4.4 Songs can be written in different languages. We know visualize the top 5
languages.

Top 5 languages

[]: %%bigquery langs --project $project_id
SELECT language, COUNT(language) AS occurences
FROM `cs145-365221.spotify_database.processed_tracks`
WHERE language != "NA"
GROUP BY language
ORDER BY occurences DESC
LIMIT 5

Query is running: 0%| |

Downloading: 0%| |

[]: langs['occurences'] = (langs['occurences']).astype(np.int64)
ggplot(langs, aes(x = 'reorder(language,occurences)', y = 'occurences')) +␣

↪geom_bar(stat = "identity") + labs(x = "Languages", y = "Occurences", title␣
↪= "Top 5 languages") + theme_minimal() +␣
↪theme(plot_title=element_text(face= "bold", size=17, family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank()) +␣
↪coord_flip()

18

[]: <ggplot: (8765659738146)>

3.4.5 English is by far the most used language, followed by spanish.

3.4.6 Now, we would like to study whether language affects a song’s popularity.

Is Language a Possible Factor in Popularity?

[95]: %%bigquery lang --project $project_id
SELECT language, AVG(track_popularity) AS avg_pop
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE language != "NA"
GROUP BY language
HAVING COUNT(language) > 10
ORDER BY avg_pop DESC

Query is running: 0%| |

Downloading: 0%| |

19

[96]: lang

[96]: language avg_pop
0 pt 68.303571
1 it 67.300000
2 de 62.954545
3 es 62.932015
4 fr 62.176471
5 en 61.695045
6 pl 57.791667
7 id 56.933333
8 tl 54.950000
9 nl 53.650000

[99]: lang['avg_pop'] = (lang['avg_pop']).astype(np.int64)
ggplot(lang, aes(x = 'reorder(language,avg_pop)', y = 'avg_pop')) +␣

↪geom_point() + labs(x = "Languages", y = "Average popularity", title =␣
↪"Average popularity per language") + theme_minimal() +␣
↪theme(plot_title=element_text(face= "bold", size=17, family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank())

20

[99]: <ggplot: (8771390417917)>

3.4.7 Although most songs of the dataset are in english, the latter is not the most
popular language. Portuguese and Italian are on average more popular than all
other languages, followed by french, spanish, deutsch, and finally english.

3.4.8 Now, we look at the relationship between popularity and the 4 variables that
we identified earlier in the heatmap : loudness, duration, explicit and valence.

Loudness
[]: %%bigquery loudness_data --project $project_id

SELECT loudness, track_popularity
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`

Query is running: 0%| |

Downloading: 0%| |

21

[]: loudness_data

[]: loudness track_popularity
0 -5.473 38
1 -5.442 65
2 -6.668 69
3 -3.754 47
4 -6.454 65
… … …
6541 -7.070 53
6542 -7.865 52
6543 -5.767 62
6544 -7.358 80
6545 -4.633 57

[6546 rows x 2 columns]

[]: loudness_data['track_popularity'] = loudness_data['track_popularity'].astype(np.
↪int64)

[]: loudness_data['track_popularity'] = loudness_data['track_popularity'].astype(np.
↪int64)

ggplot(loudness_data, aes(x = 'loudness', y = 'track_popularity')) +␣
↪geom_point(alpha = 0.1) + geom_smooth(method = "lm") + labs(x = "Loudness",␣
↪y = "Popularity", title = "Song popularity according to loudness") +␣
↪theme_minimal() + theme(plot_title=element_text(face= "bold", size=17,␣
↪family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank())

22

[]: <ggplot: (8765657712086)>

3.4.9 According to this chart, the louder a song, the more popular it is, even though
there is no perfect correlation.

3.4.10 We conduct the same analysis with duration.

Duration
[]: %%bigquery duration --project $project_id

SELECT duration_ms, track_popularity
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`

Query is running: 0%| |

Downloading: 0%| |

[]: duration['track_popularity'] = duration['track_popularity'].astype(np.int64)
duration['duration_ms'] = duration['duration_ms'].astype(np.int64)

23

ggplot(duration, aes(x = 'duration_ms', y = 'track_popularity')) +␣
↪geom_point(alpha = 0.1) + geom_smooth(method = "lm") + labs(x = "Duration",␣
↪y = "Popularity", title = "Song popularity according to duration") +␣
↪theme_minimal() + theme(plot_title=element_text(face= "bold", size=17,␣
↪family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank())

[]: <ggplot: (8765656834262)>

24

3.4.11 The longer a song, the less popular it is. This might be because people like
catchy, quick songs, and because radios do not necessarily play long songs.

3.4.12 We conduct the same analysis with valence.

Valence
[4]: %%bigquery val --project $project_id

SELECT valence, track_popularity
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`

Query is running: 0%| |

Downloading: 0%| |

[7]: val['track_popularity'] = val['track_popularity'].astype(np.float64)
val['valence'] = val['valence'].astype(np.float64)

ggplot(val, aes(x = 'valence', y = 'track_popularity')) + geom_point(alpha = 0.
↪1) + geom_smooth(method = "lm") + labs(x = "valence", y = "Popularity",␣
↪title = "Song popularity according to valence") + theme_minimal() +␣
↪theme(plot_title=element_text(face= "bold", size=17, family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank())

25

[7]: <ggplot: (8771397815757)>

3.4.13 The relationship between valence and popularity seems to be rather flat, which
means that valence might not be the best predictor of popularity.

Explicit

[157]: %%bigquery explicit --project $project_id
SELECT explicit, avg(track_popularity) AS avg_track_popularity
FROM `cs145-365221.spotify_database.processed_tracks`
GROUP BY explicit
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`

Query is running: 0%| |

Downloading: 0%| |

[162]: explicit

26

[162]: explicit avg_track_popularity
0 1 64.913328
1 0 61.027644

[164]: explicit['explicit'] = explicit['explicit'].astype(np.float64)

ggplot(explicit, aes(x = 'explicit', y = 'avg_track_popularity')) +␣
↪geom_bar(stat = 'identity') + labs(x = "Explicitness", y = "Average track␣
↪popularity", title = "Average song popularity according to explicitness") +␣
↪theme_minimal() + theme(plot_title=element_text(face= "bold", size=17,␣
↪family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank())

[164]: <ggplot: (8771390118858)>

27

3.4.14 Explicit songs are on average more popular.

3.5 Genres / Sub-genres
3.5.1 We now analyze the distribution of genres in our dataset.

3.5.2 Distribution of genres

[40]: %%bigquery genre_distrib --project $project_id
SELECT count(playlist_genre) AS count_playlist_genre, playlist_genre
FROM `cs145-365221.spotify_database.processed_tracks`
GROUP BY playlist_genre
ORDER BY count_playlist_genre DESC

Query is running: 0%| |

Downloading: 0%| |

[41]: genre_distrib

[41]: count_playlist_genre playlist_genre
0 1827 rock
1 1433 pop
2 1152 r&b
3 1031 rap
4 896 latin
5 207 edm

[60]: genre_distrib['count_playlist_genre'] = genre_distrib['count_playlist_genre'] .
↪astype(np.int64)

ggplot(genre_distrib, aes(x = 'reorder(playlist_genre,count_playlist_genre)', y␣
↪= 'count_playlist_genre')) + geom_bar(stat = 'identity') + labs(x = "Genre",␣
↪y = "Occurrences", title = "Distribution of genres") + theme_minimal() +␣
↪theme(plot_title=element_text(face= "bold", size=17, family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank())

28

[60]: <ggplot: (8771394355697)>

3.5.3 Genres and popularity

3.5.4 Now we analyze the popularity of each genre.

[26]: %%bigquery genres --project $project_id
SELECT AVG(track_popularity) as avg_popularity, playlist_genre
FROM `cs145-365221.spotify_database.processed_tracks`
GROUP BY playlist_genre
ORDER BY avg_popularity DESC

Query is running: 0%| |

Downloading: 0%| |

[27]: genres

[27]: avg_popularity playlist_genre
0 68.788555 pop

29

1 62.668527 latin
2 61.907856 rap
3 61.763285 edm
4 58.590038 rock
5 57.674479 r&b

[100]: ggplot(genres, aes(x = 'reorder(playlist_genre,avg_popularity)', y =␣
↪'avg_popularity')) + geom_point() + labs(x = "Genre", y = "Popularity",␣
↪title = "Average popularity per genre") + theme_minimal() +␣
↪theme(plot_title=element_text(face= "bold", size=17, family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank())

30

[100]: <ggplot: (8771390362043)>

3.5.5 Pop music seems to be the most popular genre on average, and there is a
significant difference among genres, which means that this could be a good
predictor of popularity.

3.5.6 Distribution of subgenres

[57]: %%bigquery subgenre_distrib --project $project_id
SELECT count(playlist_subgenre) AS count_playlist_subgenre, playlist_subgenre
FROM `cs145-365221.spotify_database.processed_tracks`
GROUP BY playlist_subgenre
ORDER BY count_playlist_subgenre DESC

Query is running: 0%| |

Downloading: 0%| |

[58]: subgenre_distrib

[58]: count_playlist_subgenre playlist_subgenre
0 564 permanent wave
1 510 album rock
2 499 post-teen pop
3 483 classic rock
4 394 urban contemporary
5 384 electropop
6 375 southern hip hop
7 368 new jack swing
8 340 dance pop
9 298 latin pop
10 270 hard rock
11 263 latin hip hop
12 253 hip hop
13 210 indie poptimism
14 206 reggaeton
15 202 gangster rap
16 201 trap
17 199 neo soul
18 191 hip pop
19 129 tropical
20 93 pop edm
21 50 electro house
22 40 progressive electro house
23 24 big room

[59]: subgenre_distrib['count_playlist_subgenre'] =␣
↪subgenre_distrib['count_playlist_subgenre'].astype(np.int64)

31

ggplot(subgenre_distrib, aes(x =␣
↪'reorder(playlist_subgenre,count_playlist_subgenre)', y =␣
↪'count_playlist_subgenre')) + geom_bar(stat = 'identity') + labs(x =␣
↪"Subgenre", y = "Occurrences", title = "Distribution of subgenres") +␣
↪theme_minimal() + theme(plot_title=element_text(face= "bold", size=17,␣
↪family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank()) +␣
↪coord_flip()

[59]: <ggplot: (8771391141798)>

32

3.5.7 Permanent wave and album rock are two different subgenres of rock and are
the most popular subgenres.

3.5.8 Sub-genres and popularity

[102]: %%bigquery subgenres --project $project_id
SELECT AVG(track_popularity) as avg_popularity, playlist_subgenre
FROM `cs145-365221.spotify_database.processed_tracks`
GROUP BY playlist_subgenre
ORDER BY avg_popularity DESC

Query is running: 0%| |

Downloading: 0%| |

[103]: subgenres

[103]: avg_popularity playlist_subgenre
0 71.314629 post-teen pop
1 70.520588 dance pop
2 69.343284 trap
3 69.146597 hip pop
4 68.339921 hip hop
5 67.075269 pop edm
6 66.109524 indie poptimism
7 65.437500 electropop
8 64.798658 latin pop
9 63.759690 tropical
10 63.469543 urban contemporary
11 61.851064 permanent wave
12 61.674757 reggaeton
13 60.498099 latin hip hop
14 60.140000 electro house
15 58.696296 hard rock
16 58.476190 classic rock
17 57.905941 gangster rap
18 57.583333 big room
19 55.783920 neo soul
20 55.738667 southern hip hop
21 55.035294 album rock
22 53.950000 progressive electro house
23 46.538043 new jack swing

[104]: ggplot(subgenres, aes(x = 'reorder(playlist_subgenre,avg_popularity)', y =␣
↪'avg_popularity')) + geom_point() + labs(x = "Subgenre", y = "Popularity",␣
↪title = "Average popularity per subgenre") + theme_minimal() +␣
↪theme(plot_title=element_text(face= "bold", size=17, family = "Arial"),

legend_position= 'none',

33

legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank()) +␣
↪coord_flip()

[104]: <ggplot: (8771390328104)>

3.5.9 Post-teen pop and dance pop are two subgenres of pop and are the two most
popular subgenres. This was expected given the young demographic of Spotify
users.

3.5.10 Incorporation of charts into popularity distribution

Which countries have the highest average popularity across their number #1 charting
songs in 2020 in the Top200 chart?

[106]: %%bigquery top_countries_charting1 --project $project_id
WITH d AS(
SELECT region, title, artist
FROM `cs145-365221.spotify_database.charts` c
#FROM `cs145-project-1-365108.spotify_database.charts` c
WHERE EXTRACT(YEAR FROM c.date) = 2020 AND rank = 1 AND chart = 'top200'
GROUP BY region, title, artist)

34

SELECT region, AVG(track_popularity) AS avg_pop # title, artist
FROM d
JOIN `cs145-365221.spotify_database.processed_tracks` t
#JOIN `cs145-project-1-365108.spotify_database.processed_tracks` t
ON t.track_name = d.title
GROUP BY region #, title, artist
ORDER BY avg_pop DESC
LIMIT 20

Query is running: 0%| |

Downloading: 0%| |

[107]: top_countries_charting1

[107]: region avg_pop
0 Uruguay 98.000
1 Colombia 98.000
2 Panama 98.000
3 Ecuador 98.000
4 Bolivia 98.000
5 Nicaragua 98.000
6 Peru 98.000
7 Honduras 98.000
8 Guatemala 98.000
9 Costa Rica 98.000
10 Argentina 98.000
11 El Salvador 98.000
12 Chile 98.000
13 Spain 98.000
14 Paraguay 98.000
15 Luxembourg 94.000
16 United States 94.000
17 Estonia 94.000
18 Canada 91.875
19 Iceland 91.800

[108]: ggplot(top_countries_charting1, aes(x = 'reorder(region,avg_pop)', y =␣
↪'avg_pop')) + geom_point() + labs(x = "Region", y = "Average popularity",␣
↪title = "2020 Avg Pop of #1 Songs in Each Region") + theme_minimal() +␣
↪theme(plot_title=element_text(face= "bold", size=17, family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),

35

axis_text_x = element_text(size= 11,␣
↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank()) +␣
↪coord_flip()

[108]: <ggplot: (8771390353393)>

3.5.11 There is a certain confluence around 98 for the highest average popularity
regions for number 1 songs.

Which countries have the highest average popularity across their number #1 charting
songs in 2020 in the Viral50 chart?

[109]: %%bigquery top_countries_charting1_viral50 --project $project_id
WITH d AS(
SELECT region, title, artist
FROM `cs145-365221.spotify_database.charts` c
#FROM `cs145-project-1-365108.spotify_database.charts` c
WHERE EXTRACT(YEAR FROM c.date) = 2020 AND rank = 1 AND chart = 'viral50'
GROUP BY region, title, artist)

SELECT region, AVG(track_popularity) AS avg_pop # title, artist
FROM d

36

#JOIN `cs145-project-1-365108.spotify_database.processed_tracks` t
JOIN `cs145-365221.spotify_database.processed_tracks` t
ON t.track_name = d.title
GROUP BY region #, title, artist
ORDER BY avg_pop DESC
LIMIT 10

Query is running: 0%| |

Downloading: 0%| |

[111]: ggplot(top_countries_charting1_viral50, aes(x = 'reorder(region,avg_pop)', y =␣
↪'avg_pop')) + geom_point() + labs(x = "Region", y = "Average popularity",␣
↪title = "Average popularity across number #1 charting songs in 2020 in the␣
↪Viral50 chart") + theme_minimal() + theme(plot_title=element_text(face=␣
↪"bold", size=17, family = "Arial"),

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank()) +␣
↪coord_flip()

[111]: <ggplot: (8771394402124)>

37

3.5.12 Finland has particularly high average popularity in their number 1 charting
songs, suggesting that the region has had succesful viral hits.

Which countries have the highest average popularity across their TOP FIVE charting
songs in 2020?

[112]: %%bigquery top_countries_charting1to5 --project $project_id

WITH d AS(
SELECT region, title, artist
FROM `cs145-365221.spotify_database.charts` c
#FROM `cs145-project-1-365108.spotify_database.charts` c
WHERE EXTRACT(YEAR FROM c.date) = 2020 AND

rank BETWEEN 1 AND 5
AND chart = 'top200'

GROUP BY region, title, artist)

SELECT region, AVG(track_popularity) AS avg_pop # title, artist
FROM d
JOIN `cs145-365221.spotify_database.processed_tracks` t
#JOIN `cs145-project-1-365108.spotify_database.processed_tracks` t
ON t.track_name = d.title
GROUP BY region #, title, artist
ORDER BY avg_pop DESC
LIMIT 10

Query is running: 0%| |

Downloading: 0%| |

[113]: top_countries_charting1to5

[113]: region avg_pop
0 Argentina 91.714286
1 Uruguay 91.714286
2 Australia 91.000000
3 Netherlands 88.875000
4 Ireland 88.473684
5 Hungary 88.277778
6 Guatemala 87.500000
7 Colombia 87.444444
8 Peru 86.888889
9 Israel 86.642857

[115]: ggplot(top_countries_charting1to5, aes(x = 'reorder(region,avg_pop)', y =␣
↪'avg_pop')) + geom_point() + labs(x = "Region", y = "Average popularity",␣
↪title = "Highest average popularity across TOP FIVE charting songs in 2020")␣
↪+ theme_minimal() + theme(plot_title=element_text(face= "bold", size=17,␣
↪family = "Arial"),

38

legend_position= 'none',
legend_title = element_blank(),
legend_text = element_blank(),
axis_text_y = element_text(size=13 , family = "Arial", color = "black"),
axis_text_x = element_text(size= 11,␣

↪family='Arial',color="black"),axis_title_y = element_text(size= 11,␣
↪family='Arial',color="black"),panel_grid_minor = element_blank()) +␣
↪coord_flip()

[115]: <ggplot: (8771394438470)>

3.5.13 Uruguay, Argentina and Australia are topping the top 200 charts and have the
highest popularity among their respective top 5 songs.

3.5.14 Overall, we can see that ‘loudness’, ‘valence’, ‘duration’ and ‘explicit’ have the
highest predictive power over popularity. Also, genres and subgenres seem to
affect a song’s popularity as well. Surprisingly, regional aggregate popularities
does not favor the US, even though the most frequent language is english, but
Latin American countries score well on aggregate popularity. Finally, we saw
that language could also be a factor that influences popularity.

4 Data Prediction
4.1 Model 1 : We add all the 4 numeric variables that are the most cor-

related with popularity according to our correlation heatmap : dura-
tion,explicit,valence,loudness.

Training Data

39

[]: # Create the model

model_dataset_name = 'spotify_model_linear_regression'

dataset = bigquery.Dataset(client.dataset(model_dataset_name))
dataset.location = 'US'
client.create_dataset(dataset)

[117]: # We take 80% of our processed dataset, which corresponds to 5246 rows.
Note that the data was already randomly shuffled

%%bigquery --project $project_id

CREATE OR REPLACE MODEL `spotify_database.spotify_model_linear_regression`
OPTIONS(model_type='linear_reg', input_label_cols=['track_popularity']) AS
SELECT loudness,duration_ms,valence,explicit,track_popularity
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 < 5246

Query is running: 0%| |

[117]: Empty DataFrame
Columns: []
Index: []

[118]: %%bigquery --project $project_id

SELECT
*

FROM
ML.TRAINING_INFO(MODEL `spotify_database.spotify_model_linear_regression`)

Query is running: 0%| |

Downloading: 0%| |

[118]: training_run iteration loss eval_loss learning_rate duration_ms
0 0 2 53.585933 126.347206 0.4 2901
1 0 1 55.701027 126.453987 0.4 2750
2 0 0 83.355984 143.804054 0.2 2587

Evaluation data
[119]: %%bigquery --project $project_id

SELECT
*

FROM

40

ML.EVALUATE(MODEL `spotify_database.spotify_model_linear_regression`, (
SELECT loudness,duration_ms,valence,explicit,track_popularity
FROM `cs145-365221.spotify_database.processed_tracks`

#FROM `cs145-project-1-365108.spotify_database.processed_tracks`

WHERE int64_field_0 > 5246 AND int64_field_0 < 5896))

Query is running: 0%| |

Downloading: 0%| |

[119]: mean_absolute_error mean_squared_error mean_squared_log_error \
0 9.32065 133.98352 0.041119

median_absolute_error r2_score explained_variance
0 8.001451 0.132214 0.133458

4.1.1 These 4 variables have a certain predictive power, considering that the adjusted
R-squared of this model is 0.13.

4.2 Model 2 : We add information more specific about lyrics. Does including
popular words helps increase a song’s popularity?

Training Data

[]: # Create the model

model_dataset_name = 'spotify_model_linear_regression_words'

dataset = bigquery.Dataset(client.dataset(model_dataset_name))
dataset.location = 'US'
client.create_dataset(dataset)

[]: Dataset(DatasetReference('cs145-project-1-365108',
'spotify_model_linear_regression_words'))

[120]: # We take 80% of our processed dataset, which corresponds to 5246 rows.
Note that the data was already randomly shuffled

%%bigquery --project $project_id

CREATE OR REPLACE MODEL `spotify_database.spotify_model_linear_regression_words`
OPTIONS(model_type='linear_reg', input_label_cols=['track_popularity']) AS
SELECT loudness,duration_ms,valence,explicit,track_popularity,baby, girl,␣

↪boy,home,love,money,foul,body,sex
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`

41

WHERE int64_field_0 < 5246

Query is running: 0%| |

[120]: Empty DataFrame
Columns: []
Index: []

[121]: %%bigquery --project $project_id

SELECT
*

FROM
ML.TRAINING_INFO(MODEL `spotify_database.

↪spotify_model_linear_regression_words`)

Query is running: 0%| |

Downloading: 0%| |

[121]: training_run iteration loss eval_loss learning_rate duration_ms
0 0 1 53.740950 121.831670 0.4 3167
1 0 0 81.365771 137.907932 0.2 2501

Evaluation DATA
[122]: %%bigquery --project $project_id

SELECT
*

FROM
ML.EVALUATE(MODEL `spotify_database.spotify_model_linear_regression_words`, (

SELECT loudness,duration_ms,valence,explicit,track_popularity,baby, girl,␣
↪boy,home,love,money,foul,body,sex

FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 > 5246 AND int64_field_0 < 5896))

Query is running: 0%| |

Downloading: 0%| |

[122]: mean_absolute_error mean_squared_error mean_squared_log_error \
0 9.328874 134.939135 0.041297

median_absolute_error r2_score explained_variance
0 8.066483 0.126024 0.128405

42

4.2.1 It seems like including these popular words does not help to explain a song’s
popularity, since the adjusted R-squared decreased.

4.3 Model 3 : We remove dummy variables and add language
Training Data

[]: # Create the model

model_dataset_name = 'spotify_model_linear_regression_language'

dataset = bigquery.Dataset(client.dataset(model_dataset_name))
dataset.location = 'US'
client.create_dataset(dataset)

[]: Dataset(DatasetReference('cs145-365221',
'spotify_model_linear_regression_language'))

[123]: # We take 80% of our processed dataset, which corresponds to 5246 rows.
Note that the data was already randomly shuffled

%%bigquery --project $project_id

CREATE OR REPLACE MODEL `spotify_database.
↪spotify_model_linear_regression_language`

OPTIONS(model_type='linear_reg', input_label_cols=['track_popularity']) AS
SELECT loudness,duration_ms,valence,explicit,track_popularity,language
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 < 5246

Query is running: 0%| |

[123]: Empty DataFrame
Columns: []
Index: []

[124]: %%bigquery --project $project_id

SELECT
*

FROM
ML.TRAINING_INFO(MODEL `spotify_database.

↪spotify_model_linear_regression_language`)

Query is running: 0%| |

Downloading: 0%| |

43

[124]: training_run iteration loss eval_loss learning_rate duration_ms
0 0 0 143.922968 145.59707 NaN 2747

Evaluation DATA
[125]: %%bigquery --project $project_id

SELECT
*

FROM
ML.EVALUATE(MODEL `spotify_database.

↪spotify_model_linear_regression_language`, (
SELECT loudness,duration_ms,valence,explicit,track_popularity,language
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 > 5246 AND int64_field_0 < 5896))

Query is running: 0%| |

Downloading: 0%| |

[125]: mean_absolute_error mean_squared_error mean_squared_log_error \
0 9.289255 133.06795 0.040681

median_absolute_error r2_score explained_variance
0 7.95389 0.138144 0.141256

4.3.1 Including language slightly improves the model, which means that this variable
has a certain predictive capability, even though it is low.

4.4 Model 4 : Is a song popular only because of its characterics, or also because
of the artist’s name?

4.4.1 Here, we add the artist’s name to the model.

Training Data

[]: # Create the model

model_dataset_name = 'spotify_model_linear_regression_artist'

dataset = bigquery.Dataset(client.dataset(model_dataset_name))
dataset.location = 'US'
client.create_dataset(dataset)

[]: Dataset(DatasetReference('cs145-project-1-365108',
'spotify_model_linear_regression_artist'))

[126]: # We take 80% of our processed dataset, which corresponds to 5246 rows.
Note that the data was already randomly shuffled

44

%%bigquery --project $project_id

CREATE OR REPLACE MODEL `spotify_database.
↪spotify_model_linear_regression_artist`

OPTIONS(model_type='linear_reg', input_label_cols=['track_popularity']) AS
SELECT␣

↪track_artist,loudness,duration_ms,valence,explicit,track_popularity,language
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 < 5246

Query is running: 0%| |

[126]: Empty DataFrame
Columns: []
Index: []

[127]: %%bigquery --project $project_id

SELECT
*

FROM
ML.TRAINING_INFO(MODEL `spotify_database.

↪spotify_model_linear_regression_artist`)

Query is running: 0%| |

Downloading: 0%| |

[127]: training_run iteration loss eval_loss learning_rate duration_ms
0 0 2 35.089206 111.869180 0.2 3183
1 0 1 47.496604 130.673800 0.2 3012
2 0 0 211.071112 232.567331 0.2 2494

Evaluation DATA
[128]: %%bigquery --project $project_id

SELECT
*

FROM
ML.EVALUATE(MODEL `spotify_database.spotify_model_linear_regression_artist`, (

SELECT␣
↪track_artist,loudness,duration_ms,valence,explicit,track_popularity,language

FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 > 5246 AND int64_field_0 < 5896))

Query is running: 0%| |

45

Downloading: 0%| |

[128]: mean_absolute_error mean_squared_error mean_squared_log_error \
0 10.879781 191.095408 0.061287

median_absolute_error r2_score explained_variance
0 9.022353 -0.237689 -0.227528

4.4.2 Surprisingly, the artist’s name decreases a lot the adjusted R-Squared. We
would have expected the artist’s name to be a great predictor of a song’s pop-
ularity, but it actually worsened our model.

4.5 Model 5: Are genres and sub-genres associated with popularity?
4.5.1 We saw that genres and subgenres could have a certain predictive power, so we

will add them to model 3 (without the artist’s name).

Training Data

[]: # Create the model

model_dataset_name = 'spotify_model_linear_regression_genre'

dataset = bigquery.Dataset(client.dataset(model_dataset_name))
dataset.location = 'US'
client.create_dataset(dataset)

[]: Dataset(DatasetReference('cs145-365221',
'spotify_model_linear_regression_genre'))

[149]: # We take 80% of our processed dataset, which corresponds to 5246 rows.
Note that the data was already randomly shuffled

%%bigquery --project $project_id

CREATE OR REPLACE MODEL `spotify_database.spotify_model_linear_regression_genre`
OPTIONS(model_type='linear_reg', input_label_cols=['track_popularity']) AS
SELECT loudness,duration_ms,valence,explicit,track_popularity,language,␣

↪playlist_genre,playlist_subgenre
FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 < 5246

Query is running: 0%| |

[149]: Empty DataFrame
Columns: []
Index: []

46

[150]: %%bigquery --project $project_id

SELECT
*

FROM
ML.TRAINING_INFO(MODEL `spotify_database.

↪spotify_model_linear_regression_genre`)

Query is running: 0%| |

Downloading: 0%| |

[150]: training_run iteration loss eval_loss learning_rate duration_ms
0 0 1 60.385911 127.434462 0.4 2509
1 0 0 102.527777 147.212790 0.2 2359

Evaluation DATA
[151]: %%bigquery --project $project_id

SELECT
*

FROM
ML.EVALUATE(MODEL `spotify_database.spotify_model_linear_regression_genre`, (

SELECT␣
↪loudness,duration_ms,valence,explicit,track_popularity,language,playlist_genre,playlist_subgenre

FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 > 5246 AND int64_field_0 < 5896))

Query is running: 0%| |

Downloading: 0%| |

[151]: mean_absolute_error mean_squared_error mean_squared_log_error \
0 8.371443 120.153898 0.034349

median_absolute_error r2_score explained_variance
0 6.800798 0.221786 0.224338

Testing DATA

[153]: %%bigquery --project $project_id
SELECT

*
FROM

ML.EVALUATE(MODEL `spotify_database.spotify_model_linear_regression_genre`, (
SELECT␣

↪loudness,duration_ms,valence,explicit,track_popularity,language,playlist_genre,playlist_subgenre
FROM `cs145-365221.spotify_database.processed_tracks`

47

#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 > 5896))

Query is running: 0%| |

Downloading: 0%| |

[153]: mean_absolute_error mean_squared_error mean_squared_log_error \
0 8.4087 112.735449 0.033542

median_absolute_error r2_score explained_variance
0 7.121546 0.298476 0.304578

4.5.2 Adding genre and subgenre more than doubled the model’s R-squared (from
0.13 to 0.29), which suggests that these 2 variables are indeed good predictors
of popularity.

4.5.3 Finally, we make predictions on the test set with our final model (model 5).

Predictions on test set
[154]: %%bigquery --project $project_id

SELECT
*

FROM
ML.PREDICT(MODEL `spotify_database.spotify_model_linear_regression_genre`, (

SELECT␣
↪loudness,duration_ms,valence,explicit,track_popularity,language,playlist_genre,playlist_subgenre

FROM `cs145-365221.spotify_database.processed_tracks`
#FROM `cs145-project-1-365108.spotify_database.processed_tracks`
WHERE int64_field_0 > 5896))

Query is running: 0%| |

Downloading: 0%| |

[154]: predicted_track_popularity loudness duration_ms valence explicit \
0 57.610385 -7.108 272160 0.212 1
1 47.682009 -4.516 325467 0.697 1
2 62.114297 -6.823 295387 0.657 0
3 61.073604 -6.544 436880 0.351 0
4 61.084552 -4.755 204375 0.415 0
.. … … … … …
644 73.972776 -3.061 169733 0.396 0
645 74.040128 -4.511 203373 0.339 1
646 65.703629 -7.123 223880 0.239 0
647 57.999804 -11.209 279693 0.752 0
648 58.806872 -14.124 207307 0.517 0

48

track_popularity language playlist_genre playlist_subgenre
0 64 en rap southern hip hop
1 41 nl rap southern hip hop
2 60 en r&b urban contemporary
3 48 en r&b urban contemporary
4 62 en edm big room
.. … … … …
644 47 en pop post-teen pop
645 75 en rap trap
646 60 en pop indie poptimism
647 68 en rock permanent wave
648 39 en rock permanent wave

[649 rows x 9 columns]

5 Conclusion
5.0.1 Our hypothesis proved correct : the 4 attributes had a relatively strong pre-

dictive power, and language also slightly improved the model. Intuitively, we
expected genres and subgenres to play an important role in a song’s popularity,
which proved to be true. However, we expected the artist’s name to play a huge
role in a song’s popularity, but it happened to worsen our model considerably.
This leads us to believe that just because one artist’s hit increases their average
popularity, it does not mean that their other songs will follow in that trend.

5.0.2 We think our results confirm normal intuitions but also show that artists should
focus on aggregate features because cumulatively, the variables together con-
structed a stronger model than their isolated parts.

5.0.3 If we had more time, we would have studied the evolution of the popularity
drivers over time. Moreover, we would have, analyzed the popularity drivers
within genres and subgenres. This makes sense because for example, Indie pop
excels in low energy music compared to punk rock, and an artist would be
more interested in getting conclusions about their own genre. Finally, in the
visualizations, we noticed clustering of a specific range of loudness, duration,
and valence. It would have been interesting to focus on these clusters and
construct a differences-in-differences model that treats the trends before and
after these clusters as a control and treatment.

49

	Project Overview
	Analysis of Dataset
	Relational schema
	Tables
	Tracks table (133.05 MB)
	Artists Dataset (73.1 MB)
	Charts Dataset (3.46 GB)
	Lyrics Dataset (42.47 MB)

	Data Exploration
	Data preparation and feature engineering
	We join the lyrics dataset with the tracks dataset, to have access to the full set of variables concerning tracks. We need to do this because the lyrics dataset does not contain some variables such as `explicit' or `release date', and the tracks dataset does not contain variables such as ``lyrics'' or ``playlist genre'.
	Nickolay Lamm, a Pittsburgh-based digital artist, has a recent project called ``History of Love'' in which he collected the data of the songs on Billboard's Year-End Hot 100 list since 1960. He lists the most popular words in these songs.
	We randomly shuffle the dataset and add it to BigQuery. The reason we shuffle it is because in the Machine Learning part, we are going to take the first 80% as training, the next 10% as validation, and the last 10% as testing. We would like this split to be random so we shuffle the dataset now.

	Data visualization
	We visualize the correlation among all numeric variables
	Most variables are not correlated, but we can see some exceptions, such as ``explicit'' with ``speechiness'', or ``loudness'' with ``energy''.

	Our target variable is `popularity'. Thus, we visualize the correlation of each variable with our target variable `popularity'.
	We can see that `duration_ms' and `valence' are the two most negatively correlated variables with popularity, while `explicit' and `loudness' are the two most positively correlated variables with popularity. Given this, we predict that these four variables will most succesfully predict popularity in our ML model.
	Now, we analyze the distribution of popularity among all songs of our dataset.
	It seems that popularity is normally distributed across all songs of our dataset, with mean between 60 and 70.
	Songs can be written in different languages. We know visualize the top 5 languages.
	English is by far the most used language, followed by spanish.
	Now, we would like to study whether language affects a song's popularity.
	Although most songs of the dataset are in english, the latter is not the most popular language. Portuguese and Italian are on average more popular than all other languages, followed by french, spanish, deutsch, and finally english.
	Now, we look at the relationship between popularity and the 4 variables that we identified earlier in the heatmap : loudness, duration, explicit and valence.
	According to this chart, the louder a song, the more popular it is, even though there is no perfect correlation.
	We conduct the same analysis with duration.
	The longer a song, the less popular it is. This might be because people like catchy, quick songs, and because radios do not necessarily play long songs.
	We conduct the same analysis with valence.
	The relationship between valence and popularity seems to be rather flat, which means that valence might not be the best predictor of popularity.
	Explicit songs are on average more popular.

	Genres / Sub-genres
	We now analyze the distribution of genres in our dataset.
	Distribution of genres
	Genres and popularity
	Now we analyze the popularity of each genre.
	Pop music seems to be the most popular genre on average, and there is a significant difference among genres, which means that this could be a good predictor of popularity.
	Distribution of subgenres
	Permanent wave and album rock are two different subgenres of rock and are the most popular subgenres.
	Sub-genres and popularity
	Post-teen pop and dance pop are two subgenres of pop and are the two most popular subgenres. This was expected given the young demographic of Spotify users.
	Incorporation of charts into popularity distribution
	There is a certain confluence around 98 for the highest average popularity regions for number 1 songs.
	Finland has particularly high average popularity in their number 1 charting songs, suggesting that the region has had succesful viral hits.
	Uruguay, Argentina and Australia are topping the top 200 charts and have the highest popularity among their respective top 5 songs.
	Overall, we can see that `loudness', `valence', `duration' and `explicit' have the highest predictive power over popularity. Also, genres and subgenres seem to affect a song's popularity as well. Surprisingly, regional aggregate popularities does not favor the US, even though the most frequent language is english, but Latin American countries score well on aggregate popularity. Finally, we saw that language could also be a factor that influences popularity.

	Data Prediction
	Model 1 : We add all the 4 numeric variables that are the most correlated with popularity according to our correlation heatmap : duration,explicit,valence,loudness.
	These 4 variables have a certain predictive power, considering that the adjusted R-squared of this model is 0.13.

	Model 2 : We add information more specific about lyrics. Does including popular words helps increase a song's popularity?
	It seems like including these popular words does not help to explain a song's popularity, since the adjusted R-squared decreased.

	Model 3 : We remove dummy variables and add language
	Including language slightly improves the model, which means that this variable has a certain predictive capability, even though it is low.

	Model 4 : Is a song popular only because of its characterics, or also because of the artist's name?
	Here, we add the artist's name to the model.
	Surprisingly, the artist's name decreases a lot the adjusted R-Squared. We would have expected the artist's name to be a great predictor of a song's popularity, but it actually worsened our model.

	Model 5: Are genres and sub-genres associated with popularity?
	We saw that genres and subgenres could have a certain predictive power, so we will add them to model 3 (without the artist's name).
	Adding genre and subgenre more than doubled the model's R-squared (from 0.13 to 0.29), which suggests that these 2 variables are indeed good predictors of popularity.
	Finally, we make predictions on the test set with our final model (model 5).

	Conclusion
	Our hypothesis proved correct : the 4 attributes had a relatively strong predictive power, and language also slightly improved the model. Intuitively, we expected genres and subgenres to play an important role in a song's popularity, which proved to be true. However, we expected the artist's name to play a huge role in a song's popularity, but it happened to worsen our model considerably. This leads us to believe that just because one artist's hit increases their average popularity, it does not mean that their other songs will follow in that trend.
	We think our results confirm normal intuitions but also show that artists should focus on aggregate features because cumulatively, the variables together constructed a stronger model than their isolated parts.
	If we had more time, we would have studied the evolution of the popularity drivers over time. Moreover, we would have, analyzed the popularity drivers within genres and subgenres. This makes sense because for example, Indie pop excels in low energy music compared to punk rock, and an artist would be more interested in getting conclusions about their own genre. Finally, in the visualizations, we noticed clustering of a specific range of loudness, duration, and valence. It would have been interesting to focus on these clusters and construct a differences-in-differences model that treats the trends before and after these clusters as a control and treatment.

